Notice and Opportunity to Comment on New Proposed Passenger Facility Charge (PFC) New Application

The City of Kansas City (City), Missouri through its Aviation Department (“the Department”) intends to file a new PFC application (PFC #12) with the Federal Aviation Administration (the “FAA”) to provide funding for one new project at Kansas City International Airport (“KCI”).

This notice is being published to provide any interested person with notice of the proposed application and an opportunity to comment, as required by Part 158 of the Code of Federal Regulations (14 CFR Part 158), “Passenger Facility Charges” (effective June 28, 1991).

As required by 14 CFR Section 158.24, this notice has been posted on KCI’s website. Any member of the public may file comments on the proposed application until September 6, 2019. All comments, and any requests for additional information about the proposed application and project should be submitted to the address listed below under “Notice:”. 14 CFR Part 158 is the final rule that implements Sections 9110 and 9111 of the Aviation Safety and Capacity Expansion Act of 1990, passed by the U.S. Congress in November 1990, and subsequently amended. The legislation requires that the Airport provide public notice and an opportunity to comment on any proposed new PFC application. The following paragraphs provide the information required under Section 158.24 for the public notice.

THE PFC LEVEL, EFFECTIVE DATE, AND TOTAL PROJECTED PFC REVENUE

The Department intends to submit the PFC #12 application at the $4.50 per enplaned passenger. The proposed effective date for the new application is June 1, 2020, and the estimated charge expiration date of the Department’s PFC program is now projected to be December 1, 2022, if the new application is approved. Total additional PFC revenues of $62,838,482 will be collected under PFC #12.

DESCRIPTION OF PROJECTS

Table 1 summarizes the proposed PFC #12 project and the proposed PFC collection amount Required.

<table>
<thead>
<tr>
<th>PFC No.</th>
<th>Project Name</th>
<th>Project Cost</th>
<th>Airport Funds</th>
<th>Requested PFC PAYGO</th>
<th>Requested PFC Bond Capital</th>
<th>Requested PFC Financing & Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.01</td>
<td>KCI Terminal Modernization Program (Design Only)</td>
<td>$80,916,845</td>
<td>$18,078,363</td>
<td>$20,000,000</td>
<td>$18,416,521</td>
<td>$24,421,961</td>
</tr>
<tr>
<td>PFC Project Totals</td>
<td>$80,916,845</td>
<td>$18,078,363</td>
<td>$20,000,000</td>
<td>$18,416,521</td>
<td>$24,421,961</td>
<td></td>
</tr>
</tbody>
</table>

The information for the proposed project for the PFC #12 application is contained in the remaining pages of this Notice. Any interested person may obtain more detailed justification by submitting a request to the address listed below:
NOTICE:
Pursuant to Section 158.24(c)(i) of the Federal Aviation Regulations, any interested person desiring to submit comments, must submit comments to the address below no later than September 6, 2019.

John C. Green, CPA
Deputy Aviation Director and CFO
Kansas City International Airport
P.O. Box 20047
601 Brasilia Avenue
Kansas City, Missouri 64195-0047
(816)-243-3124
John.green@kcmo.org
PROJECT INFORMATION

Project No. and Title: 12.01 KCI Terminal Modernization Program (Design only)

Application Type: Impose and Use ($4.50)

PFC Revenue: $62,838,482

Project Description:

This project is to complete final design for the Airport’s Terminal Modernization Program (TMP), which consists of (1) construction of a new passenger terminal on the site of the existing Terminal A, (2) associated airside improvements; (3) associated landside (access and terminal road) improvements; and (4) new parking facilities. Terminal A will be demolished to enable construction of the new terminal, and Terminals B and C will be demolished upon commissioning of the new terminal.

The project scope will include robust IT infrastructure that can support a range of “smart” technologies that can be implemented by KCI, the airlines, and concessionaires. The terminal will be designed and built to meet LEED Gold standards and will be compliant with the Americans with Disabilities Act (ADA) design guidelines and requirements.

The Design-Build Delivery method will be utilized on this Project involving design and construction components that are contracted with a single entity known as a design-builder (DB). The design-builder, is responsible for taking the Airport’s concept, leading the development of the basis of design, and completing the detailed design. With the Airport’s approval, the design-builder will provide full construction services for the Project.

Skidmore, Owings & Merrill Architects (SOM), the designated Architect of Record, will work closely with the Project Team and participate in the Airport’s design decisions by providing information, estimates, schemes, and recommendations regarding construction materials, methods, systems, phasing, and costs that will provide the highest quality, energy conserving and efficient building within the budget and aggressive schedule for the Project.

The design project will include development of conceptual, intermediate (e.g. 30%, 60%) and final designs and construction documents.

Table 2 below provides a breakdown of the costs for this project by contractor, showing the role of each firm in the design process. The project costs are based on contracted costs. The PFC amount reflects an estimate that 68% of construction costs, exclusive of soft costs (including the design costs in this application, contingencies and design evolution costs,) will be PFC eligible. This percentage was used to calculate the amount of PFC funding for the design project capital costs.

Additional information about the methodology used to develop this estimate and supporting tables showing eligible and ineligible costs are available upon request to the address listed above.
Passenger Terminal
The new Terminal will include 39 gates equipped with passenger boarding bridges, with the capability to expand to 42 gates. The gates will support a range of aircraft from Group I to Group V and include four (4) international-capable gates, which will be able to accommodate two (2) wide-body aircraft.

The Terminal footprint will form the letter “I”. Contact gates will be located on two concourses set parallel to the head house. The concourses will be connected by a pedestrian walkway. The outer concourse (west) will be dual-loaded with twenty-seven (27) contact gates. The inner concourse (east) will be a combination single-loaded and dual-loaded concourse with twelve (12) contact gates. The pedestrian walkway will be a two-level connector with moving walkways on the passenger level and baggage handling make-up at the ground level. The Terminal layout will allow expansion of the inner concourse and head house to the south.

Figure 1 below shows the proposed layout of the new Terminal
The head house is planned to accommodate processing capacity for a 42-gate level of activity with minimal disruption as security processors are added. This design will avoid the need for costly and disruptive modifications to the head house in the future as activity increases to the level requiring the full 42 gates. Subject to final design, it will include 39 ticket counters (with 83 self-service passenger kiosks and 35 bag drop positions); seven domestic baggage claim devices (with 1,120 linear feet of baggage claim frontage; a consolidated passenger screening checkpoint with 18 screening lanes (including seven TSA Precheck lanes); an automated in line checked baggage screening system; a federal inspection services (FIS) facility for Customs and Border Protection (CBP) functions with one baggage claim device); retail concession space, public restrooms lactation rooms and other amenities typically found in passenger terminals. Curb-side check-in facilities will also be provided.

Thirty-one of the initial 39 gates will be leased on a preferential-use basis. The remaining eight gates will be city-owned and available on a common-use basis. All outbound and inbound baggage systems, including baggage claim devices, will be common use.

Subject to final design, the total area of the terminal will be approximately 1,077,600 square feet (s.f.). There will be two levels housing most space and terminal activity – an arrivals level (561,600 s.f.) and a departures level (479,200 s.f.). In addition, a basement level and a mezzanine level will include limited usable space (21,300 s.f. and 15,500 s.f., respectively).
a. **Arrivals Level**: The non-secure area of the lower, Arrivals level will contain baggage claim, airline baggage service offices, a United Services Organizations (USO) lounge, and an area for meeters and greeters. The secure area of the Arrivals level contains Customs and Border Patrol (CBP) and Federal Inspection Services (FIS) operations to process international arrivals, baggage handling (CBRA, CBIS, outbound make-up, and inbound systems), and ramp control. The CBP area is to be a standalone space with FIS and an independent inbound baggage system, baggage claim area, and sterile passenger circulation. In addition, the secure area provides back-of-house support space for Transportation Security Administration (TSA), airport and airline operations, retail and concessions, and mechanical and electrical equipment. A loading dock for goods delivery and trash removal will be provided at the north end of the inner concourse.

b. **Departures Level**: The upper level of the Terminal will contain departures functions as well as circulation to and from gates. The non-secure (east) area of Departures Level will include passenger ticketing, airline ticket offices (ATOs), baggage drop, and circulation along the front interface of the Terminal. Additional check-in and baggage drop desks are provided at the Departures Level curb. The non-secure area is connected to the secure area of the Departures Level by an 18-lane security checkpoint (including seven precheck lanes) and secure corridor. Secure, airside functions include gate hold rooms, retail and concessions, a common-use premium lounge, children’s play areas, areas for dwell, restrooms, and passenger circulation.

The Departures Level has two concessions nodes on the secure side of the security checkpoint, located at either end of the pedestrian walkway.

The passenger corridor connects the inner and outer concourse nodes with moving walks, while offering ample views to the airside. Shell space for two future 10,000 square foot premium lounges has been provided on the roof level above each concession’s node.

In addition, the secure area will provide additional support space for TSA, airport operations, and airline operations, in addition to an automated baggage screening facility that will meet TSA’s latest standards.

c. **Basement Level**: The basement level will include public circulation and mechanical, electrical and plumbing (MEP) spaces.

d. **Mezzanine Level**: The mezzanine level will include MEP space.

Airside Development

The airside scope of work will include demolishing, repaving, and restriping of the existing apron area and vehicle service roads (VSR) to align with the position of the new Terminal concourse and gates. In addition, the existing taxilane and taxiway network will be reconfigured to provide aircraft with efficient access between movement and non-movement areas. A new centralized deicing operation and infrastructure for electric ground service vehicles (eGSE) will provide additional airside operational support. The scope will include relocating existing utilities and services, construction of new utility services, a hydrant fueling system, airfield lighting and guidance signage, and communication infrastructure within the project boundary.

a. **Apron & Taxilane Network**: An updated taxilane network will facilitate aircraft movement and
accommodate a range of aircraft sizes. Aircraft parking aprons and gates will be designed to accommodate up to Group III category aircraft, with a number of gates capable of handling larger Group V aircraft. Contact gates on the east side of the outer concourse and west side of the inner concourse will be adjacent to two (2) ADG III-capable taxilanes. An additional ADG V-capable centerline will be provided in these taxilanes. The remaining contact gates will be accessed by a mix of single and dual taxilanes. The non-movement area will connect to the taxiway system through three airside entrance points onto the north/south-oriented Taxiway “B” and one southern point onto the east/west-oriented Taxiway “D”. Twenty-five Remain Overnight (RON) aircraft parking positions will be provided in proximity to the new Terminal. The non-movement area, including the new deicing operation, will be monitored and controlled by virtual ramp control operation, supported by a network of cameras. Space will be allocated on the lower level of the outer concourse for the virtual ramp control operation and infrastructure. The virtual ramp control system will rely on cameras and sensors to monitor aircraft movement on the ramp. Infrastructure will include the cameras, sensors and cabling to feed data and images to a control center. A hydrant fueling system under the terminal apron will be reconstructed to accommodate the configuration of the new terminal.

b. **Deicing Operations**: A separate, independent aircraft de-icing operation inclusive of deicing positions, spent glycol collection, glycol storage, and vehicle parking will be accommodated around the existing Terminals B and C apron. The facility will be designed to support thirty-nine (39) aircraft deicing operations in a one-hour period and fifteen (15) deicing positions. The proposed deicing positions are located in between Terminals B and C and the south and east sides of Terminal C. The positions will utilize existing apron pavement. Existing pavement markings will be removed, and the area will be restriped with new markings to delineate the new deicing positions. The existing glycol collection system in this area will convey glycol contaminated runoff west from the Terminal B and C apron. South of the proposed Terminal inner concourse, a new glycol collection line will intercept the existing conveyance system and convey the runoff north to existing glycol storage retention basins. Rehabilitation of the retention basins and provisions for mechanical aeration are included in the glycol collection system scope of work, ensuring odor control and KCAD compliance with its NPDES Stormwater Permit. The deicing operation will be supported by two areas designated as Site 1 and Site 2. Site 1 (deicing truck parking) is located at the northernmost apron area between Terminal B and C, between the proposed blast fence and International Circle access loop.

Site 2 (glycol storage and distribution and additional deicing truck parking) is located at the northern area east of Terminal C and west of Taxiway J at the intersection of the Terminal C apron. Site 2 will be provided with a new water main and conduit for new electrical service and fiber-optic cable.

c. **Electric-powered GSE vehicle (eGSE)**: The Kansas City Aviation Department (KCAD) has decided to start transitioning from gas powered GSE vehicles to a full electric powered GSE vehicle (eGSE) operation in a phased approach. The first phase of implementation is included in the project scope, consisting of one dual-cable/port charger provided at each contact gate. In addition, 20 dual-cable/port chargers will be provided in the baggage make-up area.
d. **Airside Utilities & Services:** Apron demolition, regrading, and repaving will significantly impact existing airside storm water infrastructure, utilities, and services, particularly those serving the Aircraft Rescue and Firefighting (ARFF) facility. Impacted utilities and services include: domestic water, sewer, storm water, glycol, natural gas, electrical, communications, and hydrant fueling. The overall apron drainage system will utilize new and existing infrastructure for storm water collection and conveyance. Existing storm box culverts will remain and will be utilized in the new collection design. The storm water design includes provisions for a roof drainage system and a pavement underdrain system. Existing detention ponds will be evaluated to handle the new storm water collection and conveyance.

The existing sanitary sewer, domestic water, and natural gas main servicing the ARFF facility must be replaced due to their proximity to new apron elevations. An existing sanitary sewer pump station servicing the ARFF will also be relocated as part of this scope of work. A separate sanitary sewer main will be installed for the new Terminal.

e. **Hydrant Fueling System:** A portion of the existing, active hydrant fueling transfer mains will be relocated out of the footprint of the new Terminal (but within the footprint of the remaining terminal aprons), providing continued service to Terminals B and C during construction. These replacement lines will also serve as the fuel supply for the new Terminal. Fuel will be provided to the gates by connecting to the relocated transfer mains and installing a single line bi-directional, looped piping system. Terminal B currently provides electrical and communication service to the ARFF. New cable and conduit for these services will be provided from the new Terminal to the ARFF.

f. **Airfield Lighting:** The Airfield Lighting Electrical Vault is located in the basement level of KCI's existing Central Utility Plant. The existing west route duct bank infrastructure for both the KCAD airfield circuits and the FAA circuits runs from the electrical vault, beneath the proposed parking garage, and under the north edge of the proposed apron. Relocation work will be required for the duct bank to avoid the new parking garage and construction of new entry roadway lanes. Additional relocation is required for a portion of the existing duct bank in the north apron area, where new RON parking apron extends over the duct bank’s existing location. Existing circuits and fiber optic cable will be relocated and spliced or repulled.

Existing taxiway and taxilane edge lighting and center lighting will be removed as part of the pavement demolition and taxiway/taxilane changes. Taxiway and taxilane centerline in-pavement reflectors and/or centerline lighting will be installed as required. Likewise, existing airfield guidance signage will be removed as necessary by pavement demolition and new guidance signage installed as required with the new pavement.

Landside Development

The landside scope of work will include a new parking garage structure and surface parking, central utility plant, new at-grade Arrivals roads, an elevated roadway to Departures, roadway network reconfiguration, roadway lighting, roadway signage updates, and underground utility relocations.

a. **Elevated Roadway:** New roadways will be constructed on the entrance side of the new Terminal. An elevated roadway structure will provide vehicular access to the Terminal’s Departures curb. An at-grade roadway will provide vehicular access to the lower level.
Arrivals curb. The upper Departures and lower Arrivals roadways will each contain four lanes of traffic. Two pedestrian crosswalks at each roadway level facilitate passenger flow between the Garage and Terminal.

b. **Roadway Network Reconfiguration:** A section of Bonn Circle, which provides service roadway access to the existing Terminals and surface parking lots, lies within the footprint of the new Terminal and Garage. Prior to the demolition of this section of roadway, new “Eastern Access” roadways will be constructed. The “Eastern Access” roadway approach reroutes vehicular access to Terminals B and C during construction and will remain as the final roadway configuration. This scope of work includes construction of a new segment of roadway connecting inbound Cookingham Drive traffic with the northern end of International Circle. New roundabouts will be constructed at Terminal B and Terminal C. International Circle will be restriped and resigned for two-way traffic. In addition to new roadways and roundabouts, new landscaping will be provided within the project boundary.

c. **Roadway Signage Updates:** Existing wayfinding and informational signs will be modified to reflect temporary construction access to Terminal B, Terminal C, and surface parking. Temporary pavement markings will be provided and roadway and parking lot lighting elements adjusted. Modifications to the existing roadway lighting system will be made to maintain lighting to Terminals B and C and to provide lighting for the new roundabouts and roadway improvements associated with the “Eastern Access” configuration. New roadway signage will be provided for wayfinding to the new Terminal and Parking Garage.

d. **Central Utility Plant:** A qualitative condition assessment of the existing Central Utility Plant (CUP) determined KCI would benefit from constructing a new CUP, as opposed to reusing the existing CUP and infrastructure. The new CUP is sited on a greenfield at the northwest corner of the intersection of Mexico City Avenue and Paris Street. The CUP will provide chilled water, hot water, and electrical service to the Terminal.

Chilled water and hot water will be produced via new chillers/cooling towers and boilers, respectively. Electrical service will be provided by separate feeds from existing substations at Tel Aviv Ave. and the TWA Overhaul Base. Both feeders will route to the new CUP and will be distributed downstream from the new CUP in a single loop to the Terminal, new Garage and existing CUP. Emergency power will be accomplished with generators distributed around the apron. The existing CUP’s electrical infrastructure will be utilized to increase service reliability and electrical redundancy to the new Terminal.

The existing CUP will remain in service during construction, providing continuous chilled water service, electrical service and fiber-optic communication to Terminals B, C, and other airport facilities. The proposed Parking Garage is in direct conflict with the chilled water pipes, electrical duct bank and cable, and fiber-optic duct bank and cable distributed from the CUP to existing Terminals A and B. Therefore, the existing pipes, duct banks, and cables will be rerouted to maintain operational service for Terminal B during construction.

e. **Utility Relocations:** Utilities and building services are circulated and distributed to the existing Terminals from a utility corridor beneath Bonn Circle. Similar to the service roadway, the utility corridor lies within the footprint of the new Terminal and Garage. Relocation of utilities and services in conflict with new construction and utility relocations are necessary to allow “Eastern Access” roadway improvements. This work will be completed prior to the start of Terminal construction, maintaining operational capabilities of Terminals B and C, the
ARFF Station, and other airport facilities. The new utility corridor will be located east of the new Garage and will contain the following relocated utilities:

- Chilled Water
- Electrical
- FAA/KCAD Duct Bank and Cable
- Fiber Optics
- Natural Gas
- Sanitary Sewer
- Storm Sewer
- Water

All utilities serving Terminal A will be disconnected, or “cut and capped”, prior to demolition of Terminal A and Garage A. Existing utilities not necessary to maintain operability of Terminal B, Terminal C and the ARFF Station shall be removed or abandoned. These facilities will remain fully operational during construction.

Currently, there are no constraints on competition at KCI, and the project is not being built, and the primary purpose of the project is not to alleviate constraints on competition. Rather, the project is intended to address other deficiencies in the Airport’s current terminal facilities, including inadequate hold-room space, inadequate passenger screening capacity and inadequate baggage claim capacity.

However, the project will increase the number of active gates by four, and accommodate the addition of three more gates in the future, when demand justifies the expansion.

Project Justification:

This project is needed to address multiple facility deficiencies in the existing terminals, as documented in the level of service (LOS) analysis completed for KCI in January 2019. The results are summarized below. The complete report is available upon request to the address listed above.

The level of service analysis is based on current version of the IATA ADRM. The ADRM designates four categories of design as listed below. Depending on the facility, the level of service is a function of either space or a combination of space and passenger wait time.

- Overdesign – Facilities are designed to provide more than an adequate level of service, with higher costs than would be necessary to provide adequate service.
- Optimum – Facilities are designed to provide adequate service at reasonable cost.
- Sub-optimum – Facilities have deficiencies that might be solved with modest improvements.
- Under-Provided – Facilities have significant deficiencies indicating a need for major reconfiguration.

For those facilities with both space and wait time standards, if the facility provides suboptimal service using one of the metrics, the facility is considered suboptimal. If the facility provides suboptimal service using both metrics, the facility is considered under-provided.
The TMP is being designed to meet the Optimum LOS for all facilities. Therefore, the LOS analysis focused on the LOS that would be provided by the existing operational terminals on the projected date of the opening of the new terminal in 2025.

The LOS analysis considered four facility categories:

1. Check-in Lobby
2. Security Screening Checkpoints
3. Passenger Holdrooms
4. Baggage Claim

As discussed more fully below, most existing terminal facilities would have a LOS rating of sub-optimal or under-provided in 2025.

a. Check-in Lobby: The LOS analysis examined existing check-in facilities for each carrier currently operating at KCI. The facilities were further subdivided by type, as applicable: full-service premium; full-service regular, self-service kiosk, ticketing-only kiosk, and bag drop. Table 3 summarizes the results. For check-in lobbies, the ADRM standards consider both space and wait time. As shown, only Air Canada’s check-in facilities would have an optimal rating in 2025.
b. **Security Screening Checkpoints:** Terminal B and Terminal C each have two security screening check points. The LOS analysis examined each check point and further subdivided the facility by type of queue (premium, main cabin, standard and precheck) and by x-ray lanes. **Table 4** summarizes the results. For security screening checkpoints, the ADRM standards consider both space and wait time. As shown, only four out of 14 x-ray lanes would have an optimal rating in 2025. In fact, the LOS analysis projected that in Terminal B, “the queues will grow exponentially, and passengers will experience high wait times. The maximum wait time will be approximately 3 hours resulting in several passengers missing their flight. The corridors will experience significant congestion preventing any flow and will primarily be used as a queueing space for the [security screening checkpoint]."
Table 4
Security Screening Checkpoints
LOS Analysis Summary

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Queue</th>
<th>X-Ray Lanes</th>
<th>LOS Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Premium</td>
<td>1</td>
<td>Under-provided</td>
</tr>
<tr>
<td></td>
<td>Main Cabin</td>
<td></td>
<td>Under-provided</td>
</tr>
<tr>
<td></td>
<td>Precheck</td>
<td>1</td>
<td>Under-provided</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>4</td>
<td>Sub-optimal</td>
</tr>
<tr>
<td></td>
<td>Precheck</td>
<td>2</td>
<td>Under-provided</td>
</tr>
<tr>
<td>C</td>
<td>Premium</td>
<td>2</td>
<td>Sub-optimal</td>
</tr>
<tr>
<td></td>
<td>Main Cabin</td>
<td></td>
<td>Sub-optimal</td>
</tr>
<tr>
<td></td>
<td>Precheck</td>
<td>2</td>
<td>Optimal</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>2</td>
<td>Optimal</td>
</tr>
</tbody>
</table>

SOURCE: LOS Analysis Table 3-4

c. Passenger Holdrooms: The LOS analysis examined each passenger holdroom in Terminal B and Terminal C. For holdrooms, the ADRM standard is based only on space. The LOS analysis projected that each of the passenger holdrooms would have a sub-optimal rating in 2025. Table 3-5 of the LOS Analysis (which is not reproduced here) provides detailed data for each holdroom, including available space and space recommended in the ADRM to meet the optimal rating, based on projected passenger occupancy. For many holdrooms the shortfall is substantial. For example, the available holdroom space at Gate 33 (1,200 s.f.) is 35% of the recommended space (3,530 s.f.); the available holdroom space at Gate 59 (1,175 s.f.) is 49% of the recommended space (2,380 s.f.); and the available holdroom space at Gate 76 (750 s.f.) is 24% of the recommended space (3120 s.f.).

d. Bag Claim: Terminal B has four baggage claim devices and Terminal C has three. The LOS analysis examined each baggage claim device. Table 5 summarizes the results. For baggage claim facilities, the ADRM standards consider both space and wait time. As shown, only three of the seven devices would have an optimal rating in 2025.
In addition, the existing terminals were opened in 1972. At 47 years old, the terminals have reached the end of their useful life. Alternative analyses for providing terminal facilities at KCI considered and rejected major renovations as an alternative to a new terminal based on the following factors:

- Higher construction and operating cost than the new terminal
- Longer and more difficult construction period than the new terminal
- Excessive space in a renovated terminal complex due to inefficient configuration and duplication of functions
- Lack of flexibility of functional uses and expansion options due to existing concrete foundations and support columns and to circular configuration.

Finally, planning studies identified a need to increase active gate capacity from 35 to 39 gates to meet current and short-term future demand. To provide this capacity with current facilities would require the reopening of Terminal A, which would have necessitated paying the operating and maintenance expenses for a facility that is much larger than necessary to provide for the projected gate requirements.